GliderGPT Documentation
  • SUMMARY
    • 📜I. Introduction
    • 🤖Synergizing AI and Blockchain
    • 😇Inspiration
    • đŸ•´ī¸Market
    • đŸŽ¯Products
      • đŸ—Ŗī¸GliderAssistant
      • đŸ§™â€â™€ī¸Image Generator
      • đŸ‘Žâ€â™‚ī¸GliderAudit
      • 🛗GliderMint
      • 🤖GliderGPT AI Agents
        • What are GliderGPT AI Agents?
        • Agent Creation
        • Initial Agent Offering (IAO)
        • Virtual Liquidation Process for GliderGPT AI Agents
        • Conditions and Processes for Transferring Funds to DEX
        • Mathematical Models and Loops Used by GliderGPT AI Agents
        • Revenue for Buyback and Burn
        • Development Documents
        • Summary
      • 🎓GliderPredict
      • đŸ›Ąī¸GliderShield
      • â›“ī¸Smart Contract
  • đŸ›Ŗī¸Roadmap
  • Economy
    • đŸ—ī¸$GGPT UTILITY TOKEN
      • đŸĒ™The $GGPT Token
      • âš–ī¸$GGPT Tokenomics
      • 🧙GliderGPT NFTs
      • â„šī¸Staking & Farming
      • đŸ•´ī¸Smart Contract Audit
      • â›“ī¸Smart contract Generate
  • KNOWLEDGE-BASE
    • â‰ī¸FAQs
    • đŸ—œī¸GliderGPT Terms of Service
    • GliderGPT Privacy Policy
    • đŸĸLegal Disclaimer
Powered by GitBook
On this page

Was this helpful?

  1. SUMMARY
  2. Products
  3. GliderGPT AI Agents

Mathematical Models and Loops Used by GliderGPT AI Agents

  1. Liquidity Pool Price Impact (Constant Product AMM):

    Plain text: P_new = P_old * (1 - Q_trade / Q_pool)

    Explanation:

    • Q_trade: Trade quantity

    • Q_pool: Total liquidity in the pool

  2. Slippage Calculation:

    Plain text: S = ΔP / P_original

    Explanation:

    • ΔP: Change in price

    • P_original: Initial price before the trade

  3. Transaction Fee Estimation:

    Plain text: F = V * r

    Explanation:

    • V: Trade volume

    • r: Fee rate (e.g., 0.3% for most DEXs)

  4. Net Proceeds from Liquidation:

    Plain text: N = P_sell * Q_sell - F - G

    Explanation:

    • P_sell: Selling price

    • Q_sell: Quantity sold

    • F: Fees

    • G: Gas costs


Loops for Computation

  1. Optimization Loop for Best DEX:

    pythonCopyEditfor dex in available_dexes:
        simulate_trade(dex, asset, trade_amount)
    select_dex_with_highest_proceeds()
  2. Trade Size Adjustment to Minimize Slippage:

    pythonCopyEditwhile slippage > threshold:
        reduce_trade_size()
    execute_trade_if_conditions_met()
  3. Dynamic ROI Calculations:

    pythonCopyEditfor price_data in real_time_market_data:
        calculate_roi(price_data, fees, gas_costs)
PreviousConditions and Processes for Transferring Funds to DEXNextRevenue for Buyback and Burn

Last updated 3 months ago

Was this helpful?

đŸŽ¯
🤖